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On Kelvin's ship-wave pattern 

By F. URSELL 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge 

(Received 25 October 1959) 

When a concentrated pressure travels with constant velocity over the free surface 
of water, it  carries with it a familiar pattern of ship waves. Let viscosity and 
surface tension be neglected, let the free-surface condition be linearized, let the 
depth of water be assumed infinite, and let initial transient effects be ignored. 
Then, as is well known, the wave motion everywhere can be found by standard 
methods in the form of a double integral. The wave pattern at  a great distance 
behind the disturbance can be found by an application of the ordinary method 
of stationary phase, which shows that the wave amplitude is considerable 
inside an angle bounded by the two horizontal rays 8 = f 8, from the disturbance, 
where 8, = sin-14 = 19go. But the method fails in two regions, near the track 
0 = 0 of the pressure point, and near the critical lines 8 = 18,. 

These two regions are treated in the present paper. It is shown that near 
8 = 0 the linearized surface elevation oscillates with indefinitely increasing 
amplitude and indefinitely decreasing wavelength. (This result holds only when 
the pressure is concentrated at a point and applied at the free surface.) Near 
the critical lines the surface elevation at  a greater distance behind the pressure 
point can be expressed in terms of Airy functions, and this expression goes over 
into the known wave pattern inside the critical angle. It is shown that near the 
critical lines the crest length increases as the cube root of the distance, and that 
the separation between crests remains constant. Contour maps of the wave sur- 
face are given for three distances behind the moving pressure point. 

1. Introduction 
When a disturbance (e.g. a ship) travels on a water surface, it carries with it a 

familiar pattern of bow and stern waves which was first explained mathematically 
by Lord Kelvin (Sir W. Thomson 1891). Instead of ship waves he considered 
the waves generated by a prescribed pressure distribution moving with a constant 
velocity U and acting on the water surface. The magnitude of the pressure and 
the resulting wave slope were assumed to be so small that the equations of motion 
could be linearized; viscosity and surface tension were neglected. Under these 
assumptions it is sufficient (in principle) to calculate the waves due to a moving 
concentrated pressure point; the effect of a distribution of surface pressure can 
thence be found by integration. Kelvin showed, apparently by using his principle 
of stationary phase, that the characteristic wave pattern of a pressure point is 
the superposition of two sets of waves effectively confined between the two 
vertical planes 8 = & 8, + t- 194, where the co-ordinates are taken as in 0 2 below; 
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for a figure see Lamb (1932, $256). A simple argument using such ideas was 
given by Havelock (1908, p. 417), and by Lamb (1932, $ 256). All these results 
are valid at a distance of many wavelengths behind the pressure point; near the 
pressure point the principle of stationary phase is not applicable. It was found 
that near the critical lines 8 = k 8, the amplitude is much larger than elsewhere 
at the same distance from the pressure point, and the simplest form of the prin- 
ciple of the stationary phase could not be used there. (Kelvin predicted infinite 
amplitudes on 8 = 8,; the amplitude variation on 8 = 8, was first given correctly 
by Havelock (1908, see equation (4.1) below).) The study of the wave pattern 
near, but not actually on, a critical line is more difficult and was undertaken by 
Hogner (1923) who was able to write the surface elevation as the sum of a double 
and of a single integral, and to show that only the latter is significant at  a large 
distance behind the pressure point. This is convenient because the application 
of the methods of steepest descents and of stationary phase to single integrals is 
simple. There are, however, some difficulties in his work. First, the single integral 
has one finite limit of integration, and this leads to complications (see p. 19 of 
his paper). Secondly, near the lines 8 = k S,, where a single asymptotic expres- 
sion in terms of Airy functions would be expected (cf. equation (4.12) below), 
Hogner’s expression changes its form as 8 passes through 8, (Hogner, 1923, 
equations (82), (83)). 

A new treatment of the problem has been given by Peters (1949). The surface 
elevation was obtained by him in a form similar to Hogner’s, as the sum of a 
double and a single integral where again only the latter contributes significantly 
to the waves far behind the pressure point; but Peters’s integral, unlike Hogner’s, 
has both limits of integration at infinity. By an immediate application of the 
method of steepest descents he found expressions which are valid when 0 is 
not near 8,. An expression was also given for 8 on and near 8 = 0,; but this is 
valid only when ND 18 - B e ]  is small, see $ 4  below. 

While the work of Peters has thus reduced the problem of finding the waves 
far behind the pressure point to the asymptotic evaluation of a single integral 
containing a large parameter, there are two regions which have not yet received 
adequate treatment, and these will be considered in the present paper. One is 
the vicinity of the track of the pressure point where 8 and z are small. The limits 
are non-uniform: we shall see by applying the method of steepest descents that 
the amplitude tends to co as 8 tends to 0 on x = 0 (but on 8 = 0 it is finite as 
z tends to 0). The other region is the neighbourhood of  8 = O,, where an expression 
in terms of Airy functions will be given; here the method of Chester, Friedman & 
Ursell (1957) is applicable, and the expression is valid in some finite angle 
including the line 8 = 0,. 

2. The elevation due to a travelling pressure point 
Peters has calculated the velocity potential and the surface elevation 

[(x, y; U , g )  above the mean water level. In  this calculation the exact free- 
surface condition has been replaced by its linearized approximation. Take the 
origin of co-ordinates travelling with the surface pressure point, the x-axis 
horizontal along the track of the disturbance, and the y-axis horizontal at 

27-2 
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right angles to the x-axis. Write K = g/U2 and define N and 8 by the 
equations 

The critical angle 8, is defined by 

K x  = Ncos0, Ky = Nsin8. (2.1) 

1 /3 = sin-11 - tan-l-- + 194O. 
2 4 2  

3 -  

and the total force acting on the fluid is denoted by Po. 
Then Peters's expressions for C(x, y) are: 

for x > 0 

where 
sin2 y cos (ky cosy) ___ 

K2+k2sin2y ' n2pU2 cl(x, y) = /om dk k2 e-kr J"" dy 
PO 0 

and 

r m  
= 21imJ (1 + u2) cos {Kyu ,/( 1 + u2)} sin {Kx .J( 1 + u2)} exp { - Kz( 1 + u2)} du 

e+O 0 

= im lim J (1 + uz) exp [iN{(cos 8 - u sin 8 )  ,/( 1 + u2)}] exp { - Kz( 1 + u2)} du ;  

(2.2) 
z+O -m 

while for x < 0, [(x, y) = gl( - x, y). At the pressure point x = 0, y = 0 the inte- 
grals diverge. 

It appears impossible to  express Cl and C2 in terms of known functions, but 
asymptotic expansions for the amplitude at a large distance (N 9 1) behind 
the pressure point can be found, and these show that the contribution of Cl is 
negligible inside the critical angle 1/31 < 0,. For according to P, p. 142,* 

(2.3) 

and when the substitution k = Ku sin y is made in the double integral, this be- 
comes 

exp ( - Kxu sin y ) cos (Kyu sin y cos y )  

O0 u4 
= k/ondy(Ksiny)3/o du- exp ( - Kxu sin y - iKyu sin y COB y )  

= Ion dy(K sin y)3 Fo(Kx sin y + iKy sin y COB y),  (2.4) 

where by definition 

* References preceded by the letters H or P are to Hogner (1923) or Peters (1949). 
respectively. 
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The last integral is related to the exponential integral (Jeffreys & Jeffreys 1946, 
p. 443), and it can be shown that for re 2 > 0 and (21 < 1 we have 

IF,V)I < A 121-3; 

while for re Z > 0 and 121 > 1 we have IPo(Z)I < A IZI-5, by the method of 
steepest descents. To find a bound for (2.4), write it as 

In  1; introduce the new variable /3 = Kx sin y + iKy sin y cos y; then 

” = ~Kxcosy+iKycos3yl 2 +]Kx+iKyI = +N,  161 
and IKsinyI = I/3(x+iycosy)-l( < 2/3Ix+iyl-l = 2PKN-I. 

Thus, ]Ill < ;Irn 12/313K3N-31~~(/3)12N-l[d/3[ < AK3N-4. (2 .5 )  
0 

Similarly, ] I 3 \  < AK3N-4. 

To find a bound for I, ,  deform the path of integration in the y-plane to pass 
below y = +T; on the new path, the real part of Kxsin y + iKy sin y cos y is 
positive, and 

[Kxsiny+iKysinycosyl > AIKx+iKyI 

which is uniformly large when N is large. Thus 

I1,1 < AJrK3N-5/dy/ < AK3N-5, (2.6) 

and equations (2.5) and (2.6) show that the double integral in (2.3) is O ( K 3 P 4 ) .  
Thus el is of order N-3 everywhere, while c, is of order N-* inside the critical angle, 
and exponentially small outside the critical angle, see P, equations (5.2), (5.4). 
Thus, c, is dominant inside the critical angle, el outside. We are considering the 
asymptotic form of <(x,y) for large N = Klx+iyl; the expressions (2.3) and 
P (5.2)) (5.4) are adequate except near 0 = 0 and 8 = k0,. (They will not be 
quoted here; see, however, Q 4 below.) We shall now obtain new expansions valid 
near 8 = 0 and 0 = 0,. 

n 

3. The track of the pressure point 
We shall have to evaluate (3.2) for small 8, where, by reason of the symmetry 

of the pattern, we shall take 0 2 0. If we attempt to find the limit in (2.2) by 
putting z = 0 in (2.2) we see that the resulting integral does not converge. This 
difficulty is avoided if the path of integration is deformed before z is placed equal 
to 0. The new path is chosen so that 

exp [iN{(cos 8 - u sin 8) 1/( 1 + u2)}] (3.1) 

tends to zero rapidly as Iu1 -+ co along the new path, and there are two cases, 
8 = 0 and 8 > 0, which must be considered separately. 

(i) If 0 = 0, take a path of integration along the straight line from 
u = -coexp (&mi) through u = 0 to coexp (&n-i), say. Along this path 
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exp {iN J( 1 + u2)} + 0 as /uI + 00, and exp { - Kz( 1 + u2)} is uniformly bounded 
for all u on the path and all z 2 0. Thus, this integral is uniformly convergent as 
z -+ 0, and 

m exp(+ni) 

P,K2 --mexp(Bni) 
(1 + u2) exp { i N J (  1 + u2)} du. (3.2) s -- n'pg g (x, 0) = im 

(Clearly a good deal of latitude is allowed in the choice of the path.) This may be 
written in terms of Bessel functions, (P, p. 140, cf. Hogner 1924, p. 7): 

and so c2 is finite when Kx is positive. 
from 

u = -coexp (&) to u = 0, and thence along the straight line to u = coexp ( - ini) 
Along this path the expression (3.1) tends to 0 as [ uI + 03, and exp { - Kz( 1 + u2)} 
is uniformly bounded. Thus, as in (i), the integral is uniformly convergent as 
z -+ 0 for fixed 8, and 

(ii) If 8 > 0, take a path of integration along the straight line 

rnexp(-+ni) 

--m exp(Qni) 
(1 + u2) exp [iN{(cos 8 - u sin 8 )  J( 1 + $)}I du. 

(3.4) 
s =Pg -~ p o p  C2@, Y) = im 

We note that the limits of integration in (3.2) and (3.4) are different, and we are 
led to suspect singular behaviour near 8 = 0. This is confirmed by the following 
calculation. First, deform the path of (3.4) into two paths of steepest descent 
through the two saddle points. These points are the roots of 

(dldu) {(cos 8 - u sin 8 )  J( 1 + u 2 ) }  = 0, 
i.e. the roots of ucosB-(1+2~~)s inB = 0, 
i.e. the points 

u+(8) = ${cot 8 + d(Cot28 - s)} and u-(8) = t{cot 8 - J(Cot28 - S)}, (3.5) 

which are real if 8 < 8, as we may suppose in this section. The paths of steepest 
descent are sketched in P, fig. 5 ,  in the plane of a convenient variable T = sinh-lu 
in terms of which the function 

(3.6) F(u)  = (cos 8 - u sin 0) J( 1 + u2) 

is single-valued. The paths of steepest descent C-(0), C+(8) in the cut u-plane are 
their conformal images and are shown schematically in figure 1. 

The path of (3.4) can be deformed into C-+C+. Consider the behaviour of 
the integral as 0 + 0. It is easy to see that the integrand tends to zero uniformly 
as Iul + 00 along C-(8), and so, as 8 + 0, 

mexp(Qni) 

--m exp ( a n d  
(1  + u2) exp {iN J( 1 + u2)) du 

m exp ( h i )  
sc- -s 

(1 + 21.2) exp {iN J( 1 + u2)} du, =s --m exp &d 

whence 

see equation (3.3)). 

irnSc- + - t(3 Y ~ ( K ~ )  - y 3 ( ~ x ) } ,  
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As for the integral along C+(O), we note that u+(@ N 4 cot 8 -+ co; thus C+(8) 
moves off to infinity as 8 -+ 0. Introduce a new variable v = u tan 8, in terms of 
which 

(( 1 - v) ,/(v2 + tan2 8)) 
m cxp iN cos2 8 

(v2 + tan2 8) exp ~~ 

m e x D  (%Ti) [ sin8 
(3.7) 

The expression {}has a saddle point at v+(8) = u+(B) tan 8 = $( 1 + ,/( 1 - 8 tan2 B)), 
which remains finite as 8 -+ 0; and the expression ( N  cos2 elsin 8) = M is a large 

FIGVRE 1. Deformation of the contour of integration for small values of 6. 

parameter tending to co as 0 -+ 0 (whether N is large or not). If we apply the 
ordinary method of steepest descents (see, for example, Jeffreys & Jeffreys 
1946, 0 17.04) to (3.7), we find (the details are omitted) that 

cot38 
N - n) exp {iMf(B)  - $nil, whence near 8 = 0 

fc+  4M* 

= ingN-4 (sinO)-gsin{-f(O)-$r) N cos2 e +o(N-+(sinO)-%), (3.8) 
sin 8 

where by definition 
3% f(s) = - (1  -Q J(1- 8 tan2O))t (1 + ,/(I - 8 tan28))), 

-+$ as 8+0 .  

The equation (3.8) shows that the free surface oscillates with infinitely increasing 
amplitude and infinitely decreasing wavelength as 8 -+ 0. This behaviour may be 
compared with the behaviour of waves due to a concentrated initial pressure 
(Lamb 1932,9239), and is responsible for the infinite wave resistance of the sur- 
face pressure point. (For a submerged pressure point or distributed pressure 
the amplitude on 8 = 0 and wave resistance are finite.) We note again that to 
obtain (3.8) it  was not necessary to assume that N is large. 

16 
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4. The neighbourhood of the critical lines 
We have noted in 1 that existing expansions are inadequate in various ways 

near 8 = & 8,. On the line 8 = 8, itself, the function F(u)  of (3.6) has a double 
zero, and the saddle points u+(O),u-(O) coalesce into a saddle point of higher 
order at  u = 1/42 which is easily treated by the method of steepest descents. 
Peters (equations (5.3), (5.5) with an error in sign in (5.3)) has shown that 

where N = Kxsec 8,. 

Thus, on (and presumably near) 8 = Be, the amplitude decreases as N - f ,  while 
elsewhere it decreases as 37-4 (see P (5.2), (5.4)), and so the waves are prominent 
near 8 = 8, when N is large. We shall now obtain an asymptotic expression which 
is valid in a finite angle including the line 6’ = 8,. This is to be compared with 
Hogner’s equations (H (82 ) ,  (83)) which change in form as the line 8 = 6, is 
crossed; it is believed that these hold when Np [8-OCl is large and N )  16-8, I is 
small, but their precise region of validity has not been investigated. Our asymp- 
totic formula will be derived by the method of Chester et at. (1957) and will 
involve the Airy function (see Jeffreys & Jeffreys 1946,s 17.07) 

to exp (&Ti) 
exp ( i t 3  - Zt) dt ,  

when 2 is real. Since in (4.3) the argument of the exponential is a cubic poly- 
nomial, comparison with (3.4) suggests the introduction of a new complex vari- 
able v by the implicit relation 

F(u,O) = (cos6’-ussin8)2/(1+~~) = - ~ v 3 + p ( 6 ) v - v ( 8 ) ,  (4.3) 

where p(8) and v(8) are to be chosen so as to make the transformation regular in a 
uniform neighbourhood of u = 1/42 for all 8 sufficiently close to 8,. The segments 
of the path of integration of (3.4) lying outside this neighbourhood are deformed 
into segments of paths of steepest descent from the saddle points, and the 
contribution from these is negligible, as in the ordinary method of steepest 
descents. The only significant contribution thus comes from the neighbourhood 
of the (nearly coincident) saddle points where the transformation (4.3) is 
applicable. 

On differentiating (4.3), keeping 8 fixed, we get 

= - vZ+p(B). 
aF(u, 8) d u  

au av ___- (4.4) 



On h'elvin's ship-wave pattern 425 

Theleft-handsidevanisheswhenu = u+(8), theright-handsidewhenv = kp*(O). 
If the (u, v)-transformation is to be regular, these points must correspond, and 
so, from (4.3), 

} (4.5) 
F(u+, 8 )  = (cos 8 - u+ sin 8 )  .J( 1 + u:) = &&8) - v(S), 
F(u-,O) = (cosO-u-sinO)~(l+u-) 2 = -$p$(O) -v (O) ,  

where u+(B) and ~ ~ ( 8 )  are known functions of 8, see equation (3.5). These equa- 
tions are readily solved for p(8) and v(8) 

where & = J(1- 8tan28). By expanding these expressions it can be shown 
that p(0) and v(8) involve only even powers of Q and are therefore regular func- 
tions of 8. 

This also follows from the general theory (Chester et al. 1957), which shows 
further that with these values of p(O) and v(8) the transformation (4.3) is indeed 
uniformly regular, and that the points u = u*((e), v = f p*(O) correspond. Follow- 
ing the procedure explained by Chester et al. (1957) we change the variable of 
integration in (3.4) to v, and expand (1 + u2) du/dv in the form 

which holds uniformly when v and 8 - 8, are sufficiently small. The theory shows 
that the asymptotic expansion of (3.4) is 

Xpm(8) (v2 - ~ ( 8 ) ) ~  exp [iN( - 4v3 + pv - v)] dv 

+ ~ 4 ; n ( 0 )  jv(vZ-p(8))mexp [ i ~ (  -4v3+pv--v)]dv, 

s 
where the integration can be extended with a negligible error from - co exp (Qri) 
to 00 exp ( - Qri), cf. P, fig. 6. To obtain the dominant terms it is sufficient to 
calculatetheleadingcoefficientsp,(O) andp,(8). Onputtingu=u,(B), v= +p3(8), 
we find that 

(1 + u 3  - = Po(@ 5 PhV) 40(@7 (3* 
and the left-hand side is known when du/dv is known at v = & p * ( O ) .  

a2F  du 2 aFd2U __ - f--- =-2v 
au2 0 av au av2 

But, from (4.4), 

whence 

where 



426 F. Ursell 

as is easily shown. The sign of (duldw), is positive for small 8 - 8,, since u = urt, 
w = +put correspond. Thus, from (4.8) and (4.9), 

(4.10) 
and 

(4.11) 

where Q = N(1- 8 tan28); the functions po(8) and q0(B) are regular near 8 = 0,. 
We thus see that the integral (3.4) is asymptotically 

= - ipo(0)/ exp [ ~ ( + w 3  +pw - iv)] dw - qo(o) w exp [ ~ ( + w s  +pw - iv)] dw, 

where w = i v  and the integration is from w = co exp ( - 4ni) to w = 00 exp (ini). 
But these integrals are multiples of the Airy function (4.2) and of its derivative. 
Thus the integral in (3.4) is asymptotically 

2ni exp ( - iNv(8)) { - iN-*po(8) Ai ( - N8p(8))  + N-3qo(8) Ai' ( - N8p(8))>. 

Higher terms in the expression are of order N-4 Ai, N-8 Ai' at most. The amplitude 
cz(x, y) is obtained from the imaginary part, cf. equation (3.4) 

s 

-__ Ai' ( - Nfp(8 ) )  cos (Nv(B)),  
N3 

(4.12) 

where ,mu(@), v(6), p0(8), q0(8) are defined by equations (4.6), (4.7), (4.10), (4.11), 
respectively, and are regular near f3 = 8,. It can be shown that near 8 = 8,. 

and that 

(4.13) 

Values of the functions,u(B), v(8),pO(O), go(@) are shown in Table 1. The functions 
Ai and Ai' are tabulated by Miller (1946). 

Equation (4.12) gives the wave pattern far behind the travelling pressure 
point; from the general theory (Chester et al. 1957) it follows that it is valid in 
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6' (degrees) 

10.00 
10.25 
10.50 
10-75 
11.00 
11.25 
11.50 
11.75 
12.00 
12.25 
12.50 
12-75 
13.00 
13-25 
13.50 
13-75 
14.00 
14-25 
14.50 
14-75 
15.00 
15.25 
15.50 
15.75 
16-00 
16.25 
16.50 
16-75 
17.00 
17.25 
17.50 
17.75 
18.00 
18-25 
18.50 
18.75 
19.00 
19.25 
19.50 
19.75 
20.00 

P(6') 
0.532 
0.510 
0.488 
0.468 
0.448 
0.429 
0.410 
0.392 
0.374 
0-357 
0.340 
0.324 
0.308 
0.293 
0.278 
0.263 
0.249 
0.235 
0.221 
0.208 
0.195 
0.182 
0.169 
0.157 
0.145 
0.133 
0.122 
0.111 
0.100 
0.089 
0.078 
0.067 
0.057 
0.047 
0.037 
0.027 
0.018 
0.008 

- 0.001 
- 0.010 
- 0.019 

46') 
- 1.227 
- 1.210 
- 1.193 
- 1.177 
- 1.162 
- 1.147 
- 1.133 
- 1.120 
- 1.107 
- 1.095 
- 1.083 
- 1.071 
- 1.060 
- 1.050 
- 1.039 
- 1.030 
- 1.020 
- 1.011 
- 1-002 
- 0.993 
- 0.984 
- 0.976 
- 0.968 
- 0.961 
- 0.953 
- 0.946 
- 0.939 
- 0.932 
- 0.925 
- 0.918 
- 0.912 
- 0.906 
- 0.899 
- 0.894 
- 0.888 
- 0.882 
- 0.876 
- 0.871 
- 0.865 
- 0.860 
- 0.855 

Po(@ 
9.484 
8.890 
8.348 
7.852 
7.397 
6.979 
6.594 
6.239 
5.911 
5.670 
5.326 
5.065 
4.822 
4.596 
4.385 
4-189 
4.005 
3.833 
3.672 
3.521 
3.379 
3.246 
3.120 
3.002 
2.891 
2.786 
2.686 
2.593 
2.504 
2-420 
2.340 
2.265 
2.193 
2.125 
2.060 
1.999 
1.940 
1.884 
1.831 
1.780 
1.732 

no(@ 
11.131 
10.545 
10-002 
9.500 
9.035 
8.603 
8.201 
7.826 
7.476 
7.148 
6.842 
6.555 
6.285 
6.032 
5.793 
5.569 
5.357 
5.157 
4.967 
4.788 
4.619 
4.458 
4.306 
4.161 
4.023 
3.892 
3.768 
3.649 
3.536 
3.428 
3.324 
3.226 
3.131 
3.041 
2.955 
2.872 
2,793 
2.716 
2.643 
2.573 
2.506 

TABLE 1. The coefficient functions p(@, v(O), Po(@,  no(@ occurring in equation (4.12) 
for the elevation 

some finite angle including 19 = 0, and it reduces to the equations of Peters (P (5.2), 
(5.4)) when IN$@) I is large, as can be shown by using the asymptotic expressions 

valid when X is large and positive. The equation (P (5.5)) is obtained by supposing 
that Ngp(6) is small, expanding the Airy funct.ion in powers of 8 - 8, and retaining 
only the first two terms. 
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5. Description of the wave pattern 
Let us consider first the well-known pattern some distance inside the critical 

lines where the Airy functions may be replaced by their asymptotic expansions 
in terms of circular functions. When N is large, the surface elevation in this region 
is of the form (see P (5.3)) 

(5.1) 

(Ic = sin- 

P I  77% 
FIGURE 2. Contours of equal magnitude of the dimensionless surface elevation 
pU4<%(x, y)/2gP0 due to a, concentrated force Po moving with velocity U, for grlUe = 2 m / A  
near 100. (Here r denotes the distance from the disturbance, h the wavelength of waves 
moving with phase velocity V.) For the sake of clarity only positive values of the eleva- 
tion are shown. Note that the largest elevation in the figure occurs near the point 
(120.2, 28) ,  not near B = 8,. 

The curves of constant phase corresponding to each term are of the form 

rf (8)  = const.; 

that is, they are geometrically similar with respect to the origin (see also, Lamb 
1932, $256). The amplitude of each term falls off like r-4. The total surface 
elevation, being the sum of two terms, does not exhibit exact similarity with 
respect to the origin, but the amplitude is almost periodic along radii from the 
origin. 

Next let us consider the surface elevation (4.1%) near the critical line 0 = 0, 
when N is large. For very large N and bounded values of N t  18 - OC( the first term 
in (4.12) is dominant. Thus, the nodal lines (contours of zero surface elevation) 
lie near those curves where the first term vanishes, that is, near those curves 
where either sin (Nv(0 ) )  or Ai ( - Ntp(8 ) )  vanishes, that is, 

near Nv(8) = m r ,  where m is any large integer, (5.2) 

and near N%L(4 = I % I ,  I%(, * . a ,  ]%-I, - * * >  (5.3) 
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where a, < 0 is the 8th zero of Ai ( x ) .  It follows from (4.13) that the curves (5.2) 
are ultimately equidistant straight lines crossing 8 = 8, a t  an angle tan-ll/JZ 
that is, inclined at an angle tan-142 = in- + 48, + 54 i0, to the track of the dis- 
turbance, as was stated by Kelvin (W. Thomson 1891, p. 485). As for the curves 
(5.3)' it  follows from (4.13) that they are approximately of the form 

8, = sin-' + 

sxIUZ 

FIGURE 3. Contours of equal magnitude of the dimensionless surface elevation 
pU45,(x, y)/tgP,, for gr/Ua near 1000, For the sake of clarity only positive values of the 
elevation are shown. The elevation again exceeds 0.08 near the point (963, 286). 
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where p is the perpendicular distance from 0 = 8, and r is the distance from the 
origin. These curves lie inside the critical lines, and it is seen that p increases only 
slowly with distance from the origin. Thus, the curves (5.2) and (5.3) combine to 
form a net of (approximate) parallelograms: the sides parallel to 8 = 8, are of 
nearly constant length, while the length of the sides parallel to 8 = )n-++8, 
increases as the cube root of the distance. The amplitude due to the first term in 
(4.12) varies with distance as N-4 and this is ultimately much larger (by a factor 

Pi u2 
FIGURE 4. Contours of equal magnitude of the dimensionless surface elevation 
pU4c2(x, y)/BgP,, for gr/Ue near 10,000. For the sake of clarity only positive values of the 
elevation are shown. Note the progressive lengthening of the crests with distance from the 
disturbance, as shown by figures 2 to 4. 
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NB) than the term N-4 describing the variation with distance well inside the 
critical angle. Thus, ultimately the largest waves are near the critical lines 
8 = f Oc and near 0 = 0 where the linearized theory predicts infinite amplitude 
and infinitesimal wave length. 

Figures 2, 3 and 4 show contours of equal surface elevation computed from 
(4.12) for three distances, near N = 100, 1000 and 10,000, respectively, where 
N = gr/U2 = 2nr/h, and h is the wavelength of a regular wave-train travelling 
with phase velocity U .  In  each case the nodal lines lie near the boundaries of the 
parallelograms mentioned above. There are striking phase changes near the 
zeros of Ai ( - N$p(O)); these arise from the presence of the second term in (4.12). 
The lengthening of the crests with increasing N is clearly shown. Figure 3 
( N  + 1000) resembles closely the contour map computed by Hogner (1923). 

In  figure 2 ( N  = 100) the largest amplitudes occur near the point (120.2, 28) 
which is not near f3 = 0, where they would be expected. The reason is that the 
quotient N-8 obtained in the last paragraph but one is about 0.46 and differs 
little from unity. The reduction in wave height by this factor is more than 
compensated by the fairly rapid increase in Po(@ and qo(f3) as 0 decreases from 
0,; see Table 1 above. Even when N is near 10,000, the quotient N-i  is still about 
0-22. Thus the concentration of amplitude near the critical lines is not very strik- 
ing (much less so than is suggested by Havelock’s comparison (1908, Table 2) of 
the amplitude on the critical lines with the amplitude of transverse waves on 

In the computations it is assumed that the pressure is concentrated at a point 
on the free surface. If the pressure is distributed over an area, the resulting ampli- 
tude is obtained by an integration over the area, and in regions where the wave- 
length is short (compared to the dimensions of the pressure area) the amplitude 
will be reduced by destructive interference. In  particular the infinite amplitude 
predicted near the track of the disturbance will not be observed. Similar remarks 
apply when the waves are due to a submerged instead of a surface source. 

Mr H. P. F. Swinnerton-Dyer computed for me the co-ordinates of points on 
the contours of equal elevation which are shown in figures 2, 3 and 4. His help 
and advice is most gratefully acknowledged. 

e = 0). 
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